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Abstract 

The heterogeneous and homogeneous combustion of fuel-lean CH 4 /O 2 /N 2 mixtures over PdO was inves- 
tigated experimentally and numerically at equivalence ratios ϕ = 0.27–0.44, pressures 1–12 bar and surface 
temperatures 710–1075 K. I n situ Raman measurements of major gas-phase species concentrations across 
the boundary layer of a channel-flow catalytic reactor assessed the heterogeneous reactivity, while planar 
laser induced fluorescence (LIF) of the OH radical monitored homogeneous combustion. Simulations were 
performed using a 2-D code with detailed heterogeneous and homogeneous reaction mechanisms. Compar- 
isons between Raman-measured and predicted transverse profiles of major species mole fractions attested 

the atmospheric-pressure suitability of a detailed surface mechanism and allowed for the construction of 
a global catalytic step valid in the range 1–12 bar. The methane catalytic reaction rate exhibited an overall 
pressure dependence ∼p 1 −n where the exponent n was itself a monotonically increasing function of pressure, 
rising from 0.58 at 3 bar to 1.02 at 12 bar. This resulted in a non-monotonic pressure dependence of the cat- 
alytic reaction rate in the range 1–12 bar, a behavior in stark contrast to other noble metals (Pt and Rh) where 
the methane reaction rates always increased with rising pressure. Surface temperatures remained well-below 

the PdO decomposition temperature at each corresponding pressure, owning largely to the “self-regulating”
temperature effect of PdO, and this in turn mitigated homogeneous ignition. Simulations using the PdO 

decomposition temperatures as boundary conditions for the wall temperatures were further performed for 
practical CH 4 /air catalytic reactors in power generation systems. It was shown that for p < 7 bar (a range 
relevant to microreactors) homogeneous ignition was altogether suppressed. For higher pressures relevant to 

gas-turbine burners, however, gaseous combustion ought to be considered in the reactor design. 
© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

The total oxidation of methane over palladium- 
based catalysts is of key importance for pol- 
lutant abatement in natural-gas-driven vehicles 
[1,2] , for gas turbines employing hybrid hetero-/ 
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Fig. 1. (a) High-pressure rig with Raman/LIF optics, (b) 
reactor details (dimensions in mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

omogeneous combustion concepts [3,4] and for
as-to-liquid (GTL) off-shore compact conversion
ystems by supplying the heat necessary to drive
he endothermic steam reforming of natural gas
5] . Noble metals are also of general interest for
atalytic microreactors in portable power genera-
ion [6] . Palladium is the most active noble metal
or methane total oxidation at temperatures up to
00 K [7] . 

The active PdO phase decomposes to metallic
d above ∼1070 K (at ambient oxygen partial pres-
ure) followed by re-oxidation of Pd below ∼870 K,
hus creating a hysteresis in the methane conversion
uring heating/cooling cycles [8,9] . A rise in oxygen
artial pressure increases the PdO decomposition
emperature [10,11] , however, there is still no con-
ensus whether the methane reaction is structure-
ensitive above this temperature [12–14] . Fur-
hermore, in technical catalysts the support type
mpacts the oxygen mobility and hence the Pd/PdO
ycle and the resulting methane reactivity [8,15] . 

Methane oxidation over Pd-nanoparticles was
ecently studied with ab initio simulations [16,17] ,
hile macroscopic modeling of Pd/PdO transfor-
ations was reported in [18] using a detailed sur-

ace reaction mechanism. Inclusion of detailed
ethane kinetics into the Pd/PdO reaction cycle is

omplex, therefore, methane oxidation was mainly
tudied either below or above the PdO decom-
osition temperature. Below the PdO decomposi-
ion temperature, global steps for the methane to-
al oxidation at atmospheric pressure were reported
or various supports, yielding methane reaction
rders 0.7–1.0, activation energies 30–140 kJ/mol

12,19–22] and also an inhibiting effect of water
20,22] . More recently, detailed reaction mecha-
isms for methane total oxidation on PdO at at-
ospheric pressure were developed for tempera-

ures 560–800 K [23–26] (with fine-tuning against
ire microcalorimetry experiments in [24–26] ). A
etailed methane surface mechanism was also pre-
ented in [27] for Pd-substituted hexaluminates at
 bar and up to 1033 K. 

High-pressure methane combustion over Pd-
ased catalysts is of main interest for gas turbines

3,4] and GTL systems; in the latter, the trend
s to perform the methane steam reforming (in-
luding the heat-supplying methane total oxida-
ion) at the high pressures (up to 30 bar) dictated
y the downstream Fischer–Tropsch synthesis [5] .
oreover, modest pressures up to 5 bar are rele-

ant for micro-turbine-based catalytic microreac-
ors. The pressure dependence of the methane re-
ctivity on PdO has not been addressed, despite the
vailability of high-pressure experiments [27–29] .
n Pt and Rh catalysts, however, there have been

laborate high-pressure kinetic studies [30,31] . The
resent work investigates the combustion of fuel-

ean CH 4 /O 2 /N 2 mixtures over PdO at pressures
–12 bar. In situ Raman measurements of major
as-phase species concentrations and planar laser
induced fluorescence (LIF) of the OH radical were
employed. Main goals were to determine the pres-
sure dependence of the methane catalytic reactivity
and its implications on homogeneous ignition. 

2. Experimental 

2.1. Test rig and high pressure reactor 

Two horizontal Si[SiC] ceramic plates (length
300 mm ( −x ), width 104 mm ( −z ), thickness 9 mm,
positioned 7 mm apart ( −y )) and two 3-mm-thick
vertical quartz windows formed the channel reactor
( Fig. 1 ). Using plasma vapor deposition (PVD), the
inner Si[SiC] surfaces were coated first by a 1.5- μm-
thick non-porous Al 2 O 3 layer and then by a 2.2-
μm-thick Pd layer. Such thick noble metal layers re-
sembled polycrystalline surfaces. This was verified
by X-ray photoelectron spectroscopy (XPS), which
attested the absence of Al or Si from the catalyst
surfaces [30] . 
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Over the length 100 < x < 300 mm, two
adjustable-power resistive coils (positioned
above/below the Si[SiC] plates) regulated the
surface temperatures ( Fig. 1 (b)). The reactor
was mounted inside a high-pressure cylindrical
steel tank. Two 350-mm-long, 50-mm-high and
35-mm-thick quartz windows on the sides of the
high-pressure tank provided a lateral ( −z ) opti-
cal access ( Fig. 1 (a)). Furthermore, two quartz
windows at the rear tank flange and the reactor ex-
haust allowed for a streamwise ( −x ) optical access.
On each plate, 12 S-type thermocouples (along the
x –y symmetry plane, with their beads embedded
0.9 mm beneath the catalyst) monitored the surface
temperatures. At the channel inlet ( x = 0, position
“A” in Fig. 1 (b)) the gas temperature was measured
by a K-type sheathed thermocouple. To better
control the surface temperatures, in addition to the
heating coils two cooling air-jets with adjustable
flows issuing from two slots (10 × 100 mm 

2 in
x –z , located at x = 30 mm) impinged on the outer
Si[SiC] surfaces ( Fig. 1 (b)). 

Pressurized bottles supplied CH 4 (99.95%), O 2
and N 2 , with their flows regulated by three Brooks
mass flowmeters. O 2 and N 2 were mixed and
then electrically preheated ( Fig. 1 (b)). Methane
was injected to the preheated O 2 /N 2 flow in a
200-mm-long steel conical section using eight 0.5-
mm-diameter nozzles arranged laterally ( −z direc-
tion, Fig. 1 (b)). The conical section had an end-
ing cross-flow area equal to that of the channel
(104 × 7 mm 

2 ). A wire mesh and two fine grids
(0.5 mm 

2 open areas) produced good mixing of 
CH 4 with O 2 /N 2 and uniform exit velocity. At the
exit plane of the conical section, hot wire velocime-
try assessed the flow uniformity while planar LIF
of NO (doped into CH 4 , excitation at 226.25 nm,
detection at 240–265 nm) verified the good mixing
quality. 

2.2. Laser-based measurements 

A frequency-doubled pulsed Nd:YLF laser
(Quantronix Darwin-Duo, 526.5 nm, 120 ns pulse,
40 mJ energy/pulse, 2 kHz repetition rate) pro-
vided the Raman excitation ( Fig. 1 (a)). A cylin-
drical lens ( f = 150 mm) focused the laser beam
into a ∼0.3 mm thick vertical line extending over
the 7 mm channel height. The focused light-line
was laterally offset ( z = 15 mm) to increase the
collection angle and to diminish thermal beam
steering [30,31] . The Raman-scattered light was
focused by two spherical lenses ( f = 300 mm,
f/4) into the entrance slit of a 25 cm imaging
spectrograph (Chromex-250i) connected to an in-
tensified CCD camera (Princeton-Instruments PI-
MAX1024GIII, 715 × 255 pixels corresponding to
spectral shift and y -distance, respectively). A tilted
Kaiser-Optical-Systems holographic notch filter at
532 nm and an OG550 Schott colored glass filter
suppressed the excitation radiation. 
The laser and spectrograph were mounted on 

an optical table ( Fig. 1 (a)), axially-traversable over 
8 ≤ x ≤ 120 mm. As the conditions were steady and 

laminar, scattered light from 300,000 laser pulses 
was integrated on the detector chip to increase the 
signal-to-noise ratio. The 7 mm channel-height was 
recorded on 220 pixels, which were binned to 64 
pixels. Effective Raman cross-sections, which in- 
cluded transmission efficiencies (windows, lenses, 
spectrometer, filters and camera), were evaluated by 
recording the signals of several pressurized CH 4 , 
N 2 and CO 2 containing mixtures, air, and the ac- 
tual feed mixtures, as in [30] . The measurement ac- 
curacy was ± 3% for concentrations ≥ 3% volume 
and ± 8% for concentrations as low as 0.5% vol- 
ume. Raman data within typically 0.5–0.7 mm from 

both catalytic walls were discarded because of low 

signal-to-noise ratios. 
For planar OH-LIF, a frequency-doubled 

pulsed Nd:YAG laser (Quantel YG781C20 CL-D- 
LNE3, 532 nm, pulse duration 10 ns, repetition 

rate 20 Hz) pumped a Quantel TDL90-NBP2EWT 

UVT3 dye laser (90% Rhodamine 6G and 10% 

Rhodamine B dye in ethanol). The output radia- 
tion was frequency-doubled at 283.05 nm to excite 
the A-X(1,0) Q 1 (7) transition of OH. The excita- 
tion beam was transformed by a telescopic lens 
system and a slit into a vertical light sheet propa- 
gating counterflow along the x –y symmetry plane 
( Fig. 1 (a)). An intensified CCD camera (LaVision 

Imager Compact HiRes-IRO, 1392 × 1024 pixels 
binned to 696 × 512) recorded the fluorescence at 
90 ° through the reactor and tank side-windows. 
Fluorescence from both (1–1) and (0–0) transitions 
(308 and 314 nm, respectively) was collected. Areas 
100 × 7 mm 

2 were recorded on 1360 × 120 pixels 
of the CCD. 

2.3. Surface science measurements 

X-ray Photoelectron Spectroscopy (XPS) and 

Scanning Electron Microscopy (SEM) determined 

the palladium phases and surface morphology, re- 
spectively, of the fresh and used (after combustion 

tests at 955 K) catalysts. The XPS spectra in Fig. 2 
indicated predominantly metallic Pd and oxidized 

PdO phases in the fresh and used samples, respec- 
tively. This was verified by the 3d 5/2 and 3d 3/2 tran- 
sitions in Fig. 2 (3d 5/2 was located at 335.2 and 

337.2 eV for Pd and PdO, respectively, while 3d 3/2 
at 340.5 and 342.5 eV for Pd and PdO, respec- 
tively). As expected, at fuel-lean conditions com- 
bustion oxidized the Pd surface to PdO. The SEM 

images in Fig. 2 revealed a surface morphology 
developing from polycrystalline (fresh sample) to 

a porous layer (used sample), as also reported in 

the Pd wires of Xin et al. [24] . Atomic Force Mi- 
croscopy (AFM) determined that the average sur- 
face protrusions in the fresh and used samples were 
0.14 μm and 1.62 μm, respectively (see Supplemen- 
tal Fig. S1). 
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Fig. 2. XPS spectra of the fresh and used catalyst. Insets 
show corresponding SEM images. 
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Table 1 
Experimental conditions. 

Case a p ϕ U IN 

T IN 

CH 4 O 2 

1 1 0.43 3.73 439 5.4 25.0 
2 1 0.44 4.26 439 5.4 24.8 
3 3 0.35 1.61 438 4.9 27.8 
4 3 0.40 1.21 430 5.0 25.2 
5 5 0.27 0.92 440 5.5 40.7 
6 5 0.40 0.72 427 6.0 30.0 
7 8 0.29 0.51 444 5.8 39.6 
8 8 0.40 0.52 445 6.0 30.0 
9 10 0.30 0.41 426 5.9 39.9 
10 10 0.40 0.41 441 6.0 30.0 
11 12 0.30 0.24 426 5.9 39.9 
12 12 0.39 0.33 374 5.2 26.4 
a Pressure (bar), equivalence ratio, inlet velocity (m/s), 

inlet temperature (K), CH 4 and O 2 vol. content (%), bal- 
ance is N 2 . 

Fig. 3. Raman-measured (symbols) and predicted (lines) 
transverse profiles of methane and water mole fractions 
for Case 1; x = 8 mm (circles, solid lines), 21 mm (lower- 
triangles, short-dashed lines), 51 mm (upper-triangles, 
dashed–dotted lines), 81 mm (diamonds, long-dashed 
lines), 111 mm (stars, dashed double-dotted lines). Dot- 
ted lines marked TL are transport-limited simulations at 
x = 111 mm. 

Fig. 4. Raman-measured (symbols) and predicted (lines) 
transverse profiles of methane and water mole fractions 
for Cases 3 and 4. Line and symbol notations as in Fig. 3 . 
. Numerical 

A 2-D steady Navier–Stokes CFD code [30] was
sed. A staggered grid with 480 × 68 points (in
 and y , respectively) for the 300 × 7 mm 

2 do-
ain along the x –y symmetry plane produced grid-

ndependent solutions. Curves fitted through the
2 thermocouple measurements on each Si[SiC]
late yielded the lower-wall ( y = 0) and upper-wall
 y = 7 mm) temperature profiles, which were then
mposed as boundary conditions. The axial veloc-
ty, temperature, and species mass fractions at the
nlet were uniform. 

For methane total oxidation on PdO, the mech-
nism by Shimizu and Wang [23] was used (8 sur-
ace and 10 gaseous species, 26 reactions, surface
ite density 1.95 × 10 -9 mol/cm 

2 ). For gas-phase
hemistry, the C 1 /H/O elementary mechanism by
arnatz et al. [32] was employed (25 species, 108

eactions). Surface and gas-phase chemical reac-
ion rates were evaluated using Chemkin [33,34] .

ixture-average diffusion was used together with
he Chemkin transport database [35] . 

. Results and discussion 

Pressures 1–12 bar and equivalence ratios
= 0.27–0.44 were investigated ( Table 1 ). The flows
ere laminar with inlet Reynolds numbers (based
n the channel height) Re IN 

= 650–1150. Before
ach test, the catalyst was oxidized in a 380 K air-
ow for 30 min. 

.1. Assessment of catalytic reactivity 

Comparisons between Raman-measured and
redicted transverse profiles of CH 4 and H 2 O mole
ractions at fiv e axial positions are presented in
ig. 3 (1 bar) and Fig. 4 (3 bar); for clarity, up to
0 of the total 64 data points are shown over the
xperimentally-resolvable channel height 0.6 � y �
.4 mm. The corresponding wall temperature pro-
les are shown in Fig. 5 (a). As will be elaborated in
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Fig. 5. Upper-wall and lower-wall measured tempera- 
tures for all cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Raman-measured (symbols) and predicted (lines) 
transverse profiles of CH 4 and H 2 O mole fractions for 
selected cases at 5–12 bar; x = 8 mm (circles, solid 
lines), 21 mm (lower-triangles, short-dashed lines), 51 mm 

(upper-triangles, dashed–dotted lines), 111 mm (stars, 
dashed double-dotted lines). Dotted lines marked TL are 
transport-limited simulations at x = 111 mm. 
Section 4.2 , homogeneous combustion was absent
in all cases. Hence, the CH 4 and H 2 O transverse
profiles shown in Figs. 3 and 4 (and hereafter) were
solely established by catalytic chemistry (this was
also confirmed by comparing simulations with and
without including gaseous chemistry). The com-
puted transport-limited (i.e., infinitely-fast surface
chemistry) transverse profiles for the last axial po-
sition x = 111 mm are included in Figs. 3 and 4 (la-
beled “TL”). The TL profiles provided the phys-
ically attainable lowest (highest) bounds for the
methane (water) mole fractions over the Raman-
measured extent 8 ≤ x ≤ 111 mm. The condi-
tions in Figs. 3 and 4 clearly indicated a kinetically-
controlled conversion, away from the transport
limit (i.e., mole fractions of the deficient methane
reactant well-above zero at both walls), which was
a key requirement for assessing the catalytic reac-
tivity. The wall temperatures for Case 1 and Cases
3, 4 over the axial distances of Figs. 3 and 4 were
772–886 K and 778–896 K, respectively ( Fig. 5 (a)).

Simulations at 1 bar in Fig. 3 agreed very well
with the measurements at all axial positions. The
simulations reproduced the measured CH 4 and
H 2 O mole fractions and the near-wall bending of 
these species. In particular, the transverse gradi-
ent of the deficient CH 4 reactant at the wall was
a quantity directly linked to the local catalytic
reactivity [30] . At 3 bar, however, deviations be-
tween simulations and measurements appeared, as
evidenced at the last two axial locations (diamonds 
and stars in Fig. 4 ) whereby the catalytic reactivity 
was modestly overpredicted (lower computed near- 
wall CH 4 mole fractions and steeper bending of the 
computed CH 4 profiles). 

The overprediction of the catalytic reactivity 
progressively aggravated with increasing pressure 
from 3 to 12 bar. This is evidenced in Fig. 6 where 
the predicted CH 4 (H 2 O) mole fractions were sub- 
stantially lower (higher) than the measurements. 
Characteristically, at p = 5, 8, 10 and 12 bar the pre- 
dicted methane mole fractions in Fig. 6 were 27%, 
36%, 50% and 56% lower than the corresponding 
measurements at the last x -position and topmost 
y -location (star symbols). 
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Fig. 7. Measured (symbols) and predicted (lines, using 
Eq. (1) with fitted kinetic parameters) methane mole frac- 
tions. Symbols notation as in Fig. 3 . 
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Fig. 8. Reaction rate parameter Ap ( p / p o ) −n exp( −E a / 
RT w ) for Pd, Pt and Rh versus pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our previous investigations of fuel-lean
ethane/air oxidation over platinum [30] and

hodium [31] have shown that crucial for the
igh-pressure applicability of a catalytic reaction
echanism is its capacity to capture the reduction

n surface free-site coverage (and the correspond-
ng increase in oxygen coverage) with increasing
ressure. This reduction, in turn, restrained the
ate of increase of the catalytic reactivity with
ising pressure. A one-step reaction for methane
otal oxidation, first-order with respect to methane
as shown valid for Pt and Rh: 

˙  C H 4 = A ( p/ p o ) 
−n exp ( −E a /R T w ) [ C H 4 ] w , (1)

ith A the pre-exponential factor, p o a reference
ressure, E a the effective activation energy, T w the
all temperature, [CH 4 ] w the methane concentra-

ion at the gas–wall interface and ˙ s C H 4 the methane
atalytic molar reaction rate. For platinum n = 0.53
valid over 1–16 bar, with p o = 1 bar [30] ) while for
hodium n = 0.70 (2–12 bar, with p o = 2 bar [31] ). 

The positive exponent n decelerated the increase
f the reaction rate with rising pressure, since

˙  C H 4 ∼ p 1 −n (given that [CH 4 ] w ∼ p in Eq. (1) ).
he global step in Eq. (1) with fitted parameters
 a = 58 kJ/mol, A = 1.7 × 10 4 cm/s and p o = 1 bar

eproduced excellently the predictions of the de-
ailed mechanism [23] at 1 bar and also the Ra-
an measurements (see Fig. 7 (a) and further com-

are with Fig. 3 ). The kinetic parameter fitting ( A,
 a , and the confirmation of a nearly first-order
ethane dependence) was accomplished using the

etailed surface mechanism [23] along with the
urface perfectly stirred reactor (SPSR) code of 
hemkin [36] at 1 bar and temperatures 700–950 K.

nclusion of H 2 O inhibition in Eq. (1) was not nec-
ssary (as also in the atmospheric-pressure global
tep of [19] ), since no water was added in the reac-
ant feed and the catalytically-produced water was
modest. At elevated pressures the accelerated drop
of the reaction rate with rising pressure necessitated
a pressure-dependent exponent n . Simulations (see
Fig. 7 ) were in quite good agreement with the Ra-
man measurements for the deficient methane reac-
tant at all pressures, when n = 0.58 (3 bar), 0.78
(5 bar), 0.92 (8 bar), 0.98 (10 bar) and 1.02 (12 bar).

For direct comparisons with Pt and Rh
[30,31] Eq. (1) was recast, using [CH 4 ] w
= pX CH4,w / RT w , to ˙ s CH 4 (RT w /X CH 4 , w ) =
Ap ( p / p o ) −n exp( −E a / RT w ). Considering for all cat-
alysts the same wall methane mole fraction, X C H 4 ,w ,
and a common T w = 900 K (a temperature where
all three noble-metal global steps were applicable),
the quantities Ap ( p / p o ) −n exp( −E a / RT w ) which are
directly proportional to the reaction rates ˙ s C H 4 

are compared in Fig. 8 . The reactivity increased in
the order Pt, Rh and Pd (as also reported in [7] for
atmospheric-pressure). However, Pd exhibited a
complex behavior: its reaction rate increased from
1 to 3 bar and then dropped monotonically. 

The reactivity drop at high pressures was in
qualitative agreement with two earlier studies on
supported-Pd at p ≥ 5 bar [28,29] . In both studies
the linear velocity was constant when changing
pressure (i.e., the mass throughput was constant).
For Pd/Al 2 O 3 in [28] and for a fixed inlet tem-
perature of 773 K, a pressure change from 5 to
15 bar at steps of 2.5 bar led to a monotonic drop
of methane conversion ( ∼70% between 5 and
15 bar). A smaller drop in methane conversion
over Pd-Mn catalysts with rising pressure was
observed in [29] , whereby only two pressures (5
and 12 bar) were studied for T IN 

≥ 850 K; the
corresponding drop was ∼25% at 850 K and ∼50%
at 900 K. The reduction in methane conversion
with rising pressure along with the constant mass
flow rates in [28,29] indicated a pressure-induced
kinetic inhibition. Very recently [37] , first-principle
(DFT) simulations and microkinetic modeling
have revealed a non-monotonic dependence of 
the intrinsic methane catalytic reactivity on PdO
over 1–10 bar, similar to the one observed in
Fig. 8 , albeit only for the temperature window
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Fig. 9. (a1)–(c1) Computed 2-D OH maps in a cylindrical 
channel ( r = 0: centerline, r = 0.6 mm: gas/wall interface). 
CH 4 /air, ϕ = 0.4, T IN 

= 750 K and T w equal to the PdO 

decomposition temperature at each pressure. Color bar 
provides OH levels (minima: 0 ppmv, maxima: (a1) 1.4, 
(b1) 6.8, and (c1) 22.4 ppmv). (a2)–(c2) Streamwise pro- 
files of catalytic ( C ) and gaseous ( G ) methane conversion 
rates. 
693–748 K. The simulations in [37] pertained to
volumetric feed composition 1000 ppm CH 4 , 10%
O 2 , 5% H 2 O, 5% CO 2 and Ar balance. Therein,
the non-monotonic behavior was attributed to the
pressure-dependent coverages of the dominant
surface species water, bicarbonates and hydroxyls. 

4.2. Homogeneous combustion 

Palladium catalysts are known to exhibit a “self-
regulating” surface temperature effect due to the
PdO decomposition [3] . The wall temperatures in
all cases remained below the PdO decomposition
temperature at the corresponding O 2 partial pres-
sures (note, the % O 2 in Table 1 was always higher
than that of air) even when attempting to run the
plate heaters at full power and without air-cooling.
This was likely a result of two factors: a drop in
methane reactivity as the PdO decomposition tem-
perature was approached, and the heat losses from
the 9-mm-thick Si[SiC] plates towards the metal
support frame (see Fig. 1 (b)) that reduced the heat
input from the resistive coils. 

Despite the lower wall temperatures attained
over Pd (compared to Pt or Rh where their nearly
transport-limited methane conversion allowed for
peak T w above 1250 K [30,31] ) that hindered ho-
mogeneous ignition, the large near-wall methane
excess on Pd (see Fig. 7 ) should have promoted ho-
mogeneous ignition. The inhibition due to lower
wall-temperature was stronger than the promo-
tion due to higher near-wall methane concentra-
tion, leading to an overall suppression of ho-
mogeneous combustion. The absence of homoge-
neous combustion was attested by both simula-
tions (using the one-step reaction of Eq. (1) to-
gether with the elementary gas-phase mechanism
[32] ) and LIF measurements (lack of OH signals).
Since rising pressures favored homogeneous igni-
tion [30] , Case 12 was examined at the highest pres-
sure ( p = 12 bar) with full-power plate heating and
no air cooling. As seen in Fig. 5 (c) the wall tem-
peratures still did not exceed 1078 K (the PdO de-
composition temperature at the corresponding O 2
partial pressure was above 1200 K) and this was in-
sufficient to ignite gaseous combustion. The global
step of Eq. (1) also provided good agreement to the
Raman measurements for Case 12 down to the last
position x = 111 mm where T w = 1075 K as illus-
trated in Fig. 7 (f). 

The homogeneous ignition propensity was as-
sessed by performing simulations for 1–12 bar, a
CH 4 /air mixture at ϕ = 0.40 and constant T w equal
to the PdO decomposition temperatures [10,11] .
The catalytic step of Eq. (1) and the elemen-
tary gaseous mechanism were used to simulate
a representative cylindrical channel of a mono-
lithic reactor used for power generation having
diameter 1.2 mm, length 50 mm [4] , and a gas-
turbine-relevant T IN 

= 750 K. At p o = 1 bar the
inlet velocity was U IN, p o = 4 m/s, and to main-
tain the same mass throughput at higher pressures 
U IN, p = U IN, p o × ( p o / p ). Figure 9 provides 2-D OH 

distributions and streamwise profiles of methane 
catalytic ( C ) and gaseous ( G ) conversions at three 
pressures. The G profiles were constructed by in- 
tegrating over the channel radius the volumetric 
gaseous methane reaction rates. Gas-phase conver- 
sion was appreciable (amounting to more than 5% 

of the total methane conversion) only for p ≥ 7 bar. 
Although the PdO decomposition temperatures 
used as T w in the simulations of Fig. 9 in practical 
systems depended on the support material [8,15] , 
the results indicated that for atmospheric pressure 
applications and for micro-turbine based microre- 
actors with operating pressures up to 5 bar, gas- 
phase combustion was altogether suppressed. 

5. Conclusions 

The heterogeneous and homogeneous combus- 
tion of fuel-lean CH 4 /O 2 /N 2 mixtures over PdO 

was investigated at 1–12 bar and 710–1075 K. Com- 
parisons between predicted and measured trans- 
verse profiles of gas-phase methane and water mole 
fractions attested the atmospheric-pressure suit- 
ability of a detailed surface reaction mechanism 

and allowed for the construction of a global cat- 
alytic step valid for 1–12 bar and 710–900 K. For 
the highest pressure p = 12 bar, the global step was 
further valid up to 1075 K. The catalytic reactivity 
of methane over PdO exhibited a pressure depen- 
dence ∼p 1 −n with a pressure-dependent exponent 
n , increasing from 0.58 at 3 bar to 1.02 at 12 bar. 
This resulted in a non-monotonic pressure depen- 
dence of the catalytic reaction rate for 1–12 bar, a 
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ehavior opposite to that observed in other noble
etals (Pt and Rh). 

The attained surface temperatures remained be-
ow the PdO decomposition temperature and this

itigated homogeneous ignition. The developed
lobal catalytic step together with an elementary
as-phase mechanism simulated CH 4 /air combus-
ion in practical power generation catalytic burners
t various pressures and surface temperatures cor-
esponding to the theoretical PdO decomposition
emperatures. It was shown that for p < 7 bar (a
ange encompassing atmospheric pressure systems
nd microreactors) homogeneous ignition was sup-
ressed. For gas-turbine systems, however, the po-
ential of gaseous combustion must be considered
or reactor design. 
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